Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sheng-Zhen Xu, Yang-Gen Hu, Xiang Wang and Ming-Wu Ding*

Key Laboratory of Pesticides and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail: ding2005711@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 KMean σ (C–C) = 0.003 Å R factor = 0.045 wR factor = 0.120 Data-to-parameter ratio = 17.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-Ethoxy-3-phenyl-1-benzothieno[3,2-*d*]pyrimidin-4(3*H*)-one

In the crystal structure of the title compound, $C_{18}H_{14}N_2O_2S$, the packing of the molecules is mainly governed by intermolecular π - π interactions.

Received 19 April 2006 Accepted 1 May 2006

Comment

Derivatives of thienopyrimidines are of great importance because of their remarkable biological properties (Walter, 1999*a,b*). In recent years, we have been engaged in the preparation of heterocyclic derivatives containing a fused pyrimidinone system using the aza-Wittig reaction (Ding *et al.*, 2004). Some X-ray crystal structure reports for thienopyrimidine derivatives have been published (Xu *et al.*, 2005; Cao *et al.*, 2006). Here, the structure of the title compound, (I), which may be used as a new precursor for obtaining bioactive molecules, is reported (Fig. 1).

The benzothienopyrimidine ring system is almost planar, with a maximum deviation of 0.042 (2) Å for atom C3; the C11–C16 phenyl ring is twisted with respect to it, with a dihedral angle of 58.38 (6)°. Intermolecular π – π interactions seem to be effective in stabilizing the crystal structure (Fig. 2). The centroid–centroid distances between the S1/C6/C1/C7/C8 and C1–C6 rings, and between the N1/C7–C9/N2/C10 and C1–C6 rings are 3.777 (1) and 3.644 (1) Å, respectively [interplanar distances 3.540 (1) and 3.518 (1) Å, respectively]. There are no inter- or intramolecular hydrogen-bonding interactions.

Experimental

To a solution of ethyl 3-(triphenylphosphoranylideneamino)benzo-[b]thiophene-2-carboxylate (3 mmol) in dry dichloromethane (5 ml) was added phenyl isocyanate (3 mmol) under nitrogen at room temperature. After the reaction mixture was left to stand for 10 h at 273–278 K, the solvent was removed under reduced pressure and diethyl ether/petroleum ether (1:2, 12 ml) was added to precipitate triphenylphosphine oxide. After filtration, anhydrous ethanol (10 ml) was added with several drops of EtONa in EtOH. The mixture was stirred for 6 h at room temperature. The solution was then concentrated under reduced pressure and the residue was recrystallized from ethanol to afford compound (I) (yield 58%, m.p. 463 K).

© 2006 International Union of Crystallography All rights reserved

organic papers

Suitable crystals were obtained by vapour diffusion of ethanol into dichloromethane at room temperature.

Crystal data

 $C_{18}H_{14}N_2O_2S$ $M_r = 322.37$ Monoclinic, C2/c a = 22.4877 (18) Å b = 11.2298 (9) Å c = 14.8969 (12) Å $\beta = 126.298$ (1)° V = 3031.9 (4) Å³

Data collection

Bruker SMART 4K CCD areadetector diffractometer φ and ω scans Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) $T_{\rm min} = 0.936, T_{\rm max} = 0.956$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.120$ S = 1.053620 reflections 209 parameters H-atom parameters constrained Z = 8 $D_x = 1.412 \text{ Mg m}^{-3}$ Mo K α radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 292 (2) K Block, colorless $0.30 \times 0.20 \times 0.20 \text{ mm}$

16980 measured reflections 3620 independent reflections 3090 reflections with $I > 2\sigma(I)$ $R_{int} = 0.057$ $\theta_{max} = 28.0^{\circ}$

$$\begin{split} &w = 1/[\sigma^2(F_{\rm o}^{-2}) + (0.0671P)^2 \\ &+ 0.7743P] \\ &where \ P = (F_{\rm o}^{-2} + 2F_{\rm c}^{-2})/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$$

H atoms were located in a difference map and treated as riding, with C–H = 0.93–0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2001).

The authors gratefully acknowledge financial support of this work by the National Natural Science Foundation of China (project No. 20102001).

References

Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45). Bruker AXS Inc., Madison, Wisconsin, USA.

Cao, M.-H., Xu, S.-Z. & Hu, Y.-G. (2006). Acta Cryst. E62, o1319-o1320.

Figure 1

View of the molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The crystal structure of (I), viewed along the b axis. H atoms bonded to C atoms have been omitted for clarity.

Ding, M.-W., Xu, S.-Z. & Zhao, J.-F. (2004). J. Org. Chem. 69, 8366-8371.

- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS inc., Madison, Wisconsin, USA.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Walter, H. (1999a). PCT Int. Appl. No. 44.

Walter, H. (1999b). PCT Int. Appl. No. 89.

Xu, S.-Z., Cao, M.-H., Hu, Y.-G., Ding, M.-W. & Xiao, W.-J. (2005). Acta Cryst. E61, 02789–02790.